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Summary 
The paper presents results of impulse response spectral analysis that has been obtained using a 

method based on cross-correlation. The impulse response spectrum is achieved by correlating the 
impulse response and reference single-harmonic signals and using Hilbert transform to obtain an 
envelope of cross-correlation. Then, surface area under the envelope is calculating and its plot in 
frequency domain is making. The spectrum obtained this way has its advantage over the fast 
Fourier transform (FFT) that its spectral resolution does not depend on length of impulse response. 
At the same time, the spectral resolution can be much greater than spectral resolution resultant 
from FFT. Obtained results show that presented method gives possibilities to determine 
frequencies of impulse response components more accurate in comparison to FFT particularly for 
short-time impulse responses. 
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METODA USTALANIA CZĘSTOTLIWOŚCI SKŁADOWYCH ODPOWIEDZI IMPULSOWEJ   

BAZUJĄCA NA FUNKCJI KORELACJI WZAJEMNEJ WZGLĘDEM SZYBKIEJ  
TRANSFORMATY FOURIERA 

 
Streszczenie  

Praca przedstawia wyniki analizy widmowej odpowiedzi impulsowej przy użyciu metody 
opartej o funkcję korelacji wzajemnej. Widmo odpowiedzi impulsowej uzyskiwane jest poprzez 
korelowanie odpowiedzi impulsowej z harmonicznym sygnałem odniesienia i zastosowaniu 
transformaty Hilberta w celu uzyskania obwiedni funkcji korelacji wzajemnej. Wówczas 
wyznaczane jest pole powierzchni pod obwiednią i jej wykres w funkcji częstotliwości. Tak 
uzyskane widmo posiada tą zaletę ponad szybką transformatę Fouriera (FFT), że jego 
rozdzielczość widmowa nie zależy od długości odpowiedzi impulsowej. Równocześnie, 
rozdzielczość widmowa potrafi być znacznie wyższa niż rozdzielczość widmowa wynikająca ze 
stosowania FFT. Uzyskane wyniki pokazują, że przedstawiona metoda stwarza możliwości aby 
ustalać częstotliwości składowych odpowiedzi impulsowej dokładniej w porównaniu do FFT. 

  
Słowa kluczowe: odpowiedź impulsowa, widmo, wyznaczanie częstotliwości piku  

 
1. INTRODUCTION 

 
Impulse response as a result of impact testing has 

been used in wide area of engineering owing to its 
convenience and simplicity on experimentation [1]. 
It is well known that using fast Fourier transform 
(FFT) for spectrum analysis will give an immediate 
frequency profile of recorded signals. When 
analyzing signals using FFT,  frequency resolution is 
fixed as an inverse of the duration of the analyzed 
signal [2, 8] and, as a result, it fails to meet the 
requirements of measurement. One of the ways to 
increase frequency resolution and improve 
frequency determination is interpolation. It improves 

the resolution by a few orders, depending on the 
interpolation method [6, 7]. In order to avoid 
limitation in frequency resolution using FFT, it has 
been investigated the problem of frequency 
resolution and showed that it was possible to obtain 
frequency resolution of one-tenth of the spacing 
between the frequency points produced by the 
Fourier transform [3]. For increasing spectral 
frequency resolution and improving frequency 
estimation, the zero-padding technique also is 
widely used [4, 10]. In general, the interpolation 
algorithms can be a computing-cost-effective 
replacement of the zero-padding technique in 
applications [7].  
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There are a great number of engineering 
applications of correlation function. Looking for its 
new applications, the cross-correlation function has 
been utilized to correlate real-measured signal and a 
single-harmonic signal generated by software. Also, 
the Hilbert transform was used to obtain the 
envelope of the cross-correlation function [11, 12]. 
In particular cases, for stationary signals, 
experimental results have shown a linear shape of 
the envelope. It is observed when correlated signals 
have a common frequency value [9]. This effect is 
well noted and very sensitive to generated single 
harmonic signal frequency.  

This paper describes a method of determination 
of frequency of  the harmonic developed on the basis 
of the cross-correlation function and its envelope. 
The main advantage of this method over the FFT is 
its ability to obtain different frequency resolution 
from that obtained by using FFT, often required as 
increased resolution, e.g. ten times increased. 

 
2. METHODOLOGY 
 

The cross-correlation function Rxy(τ) between 
two processes, x(t) and y(t), is calculating by the 
expression as follows [2] 

 

( ) ( ) ( )dttytx
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R
T
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ττ             (1) 

 
where: T – signal record length, τ – time delay. 

The Hilbert Transform (HT) enables calculation 
of the envelope A(t) of a real-valued function x(t) as 
follows [5, 11] 

 
)(~)()( txtxtA 22 +=                (2) 

 
where )(~ tx  is HT of a real-valued function x(t). 
Then, an envelope of the cross-correlation function 
Renv is as follows 
 

)(~)()( τ+τ=τ 2
xy

2
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where: xyR~  is HT of the cross-correlation xyR . 

The envelope of the cross-correlation of two 
harmonic processes with one of them being damped, 
decays exponentially. In addition, the equality of the 
frequencies of the harmonics of two processes 
creates  the highest position of the envelope plot in 
comparison to the non-equality of the frequencies.  

Apart from analyzed signal y(t), the method used 
in the paper requires a series of harmonic signals 
gi(t) generated as follows: 

 
)sin( tiw2gi ⋅⋅⋅π=                     (4) 

 

where: i - an integer value (index), w – frequency 
resolution. 

After correlating the input and the generated 
signals, the plot position of the envelope of the 
cross-correlation indicates an identification of the 
harmonic detected. This phenomenon is easy to 
observe and the determination of common frequency 
is simple. As a result, the envelope plot can be 
effectively used to identify the harmonics 
incorporated in recorded signals with no need for the 
Fourier transform. The frequency value of the 
harmonic in the input signal y(t) can be determined 
using the envelope plot. Studying the envelopes, we 
obtain both w and i values of signal gi(t) used for 
calculations. Thus,  formula (w⋅i) indicates the 
frequency of the identified harmonic. Apart from 
cross-correlation envelope plots, indicator Se is used 
to express envelope position numerically as follows: 
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=

Δ=                     (5) 

 
where Renv is the cross-correlation envelope, Δt is the 
sampling period and N stands for the number of 
samples. As a result, it is possible to prepare the Se 
indicator plot, as a result of spectral analysis, for a 
frequency span in which the impulse response has 
been recorded. The frequency resolution of Se plot is 
strictly connected to w value (spectral resolution). 
 
3. 3-DOF SYSTEM IMPULSE RESPONSE 

ANALYSIS 
 

To illustrate the comparison between cross-
correlation-based method (CCBM) and fast Fourier 
transform (FFT) for spectral analysis of impulse 
response, a numerical example of a 3-dof system 
impulse response is considered. 

The unit impulse response function of a multi-
degree-of-freedom system can be expressed as [1] 
  

  ∑
=

ωσ−=
n

1r
drrr ttAth )sin()exp()(           (6) 

 
where: Ar - the rth modal constant, σr -  the rth 
modal damping, ωdr - the rth damped angular 
frequency of the system. Thus, three-degree-of-
freedom (3-dof) system impulse response can be 
expressed as: 
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For obtaining time history of 3-dof system 

impulse response, values of parameters of Eq. (7) 
have been assumed. They are: A1=0.25, A2=0.70,  
A3=0.15, σ1=560, σ2=610, σ3=640, f1=1556.4Hz,  
f2=5231.8Hz, f3=7684.5Hz.  
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The considered impulse response have been 
calculated by sampling frequency equal to  
fs=32768(215)Hz and length equal to N=512 samples. 
Thus, sampling time is equal to 0.0156 second. The 
impulse response h(t) under consideration is shown 
in Fig. 1. 
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Fig. 1. 3-dof system impulse response 

 
The spectral analysis using FFT has resulted 

frequencies readout by frequency resolution Δf as a 
result of the sampling frequency and number of 
samples N, ΔfFFT=fs/N [2, 8]. It has been  
ΔfFFT=32768/512=64Hz. The spectral analysis using 
CCBM has resulted frequencies readout by different 
frequency resolution independent of the sampling 
time of impulse response. The spectra obtained 
using CCBM and FFT are shown in Fig. 2.  
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Fig. 2. Spectra obtained by CCBM 

(blue) and FFT (green) 
 

The values of frequencies read from plots for 
both methods are shown in Tab. 1. There are three 
values for succeeding three plot peaks. The one of 
CCBM frequency resolution has been fixed the same 
as for FFT (64Hz). For further research of CCBM, 
resolution of 10Hz and 1Hz has also been 
considered for that method. 

The best accuracy of frequency determination 
has been obtained for CCBM and frequency 
resolution equal to 1Hz, see Fig.3 – red bar. In this 
case, differences between real frequency and 
measured frequency for considered three peaks 
reached 2.6Hz, 0.2Hz and 0.5Hz. Using FFT, this 
differences are 20.4Hz, 16.2Hz and 4.5Hz 
respectively. Thus, the accuracy of frequency 
determination using CCBM are several times lower 
than using FFT. 

 
Table 1. Frequency determination 

Real 
frequency 

(Hz) 

FFT 
Δf=64Hz 

(Hz) 

CCBM 
Δf=64Hz 

(Hz) 

CCBM 
Δf=10Hz 

(Hz) 

CCBM 
Δf=1Hz 

(Hz) 
1556.4 1536 1536 1560 1559 
5231.8 5248 5248 5230 5232 
7684.5 7680 7680 7680 7685 
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Fig. 3. Frequency differences between 

real and determined frequencies 
 
 
4. SDOF SYSTEM DIAGNOSTIC CASE 
 
 In this section, stiffness change of single degree-
of-freedom (SDOF) system has been considered. 
The SDOF system is presented in Fig. 4. It has been 
applied proposed cross-correlation-based method 
(CCBM) and fast Fourier transform (FFT) for 
obtaining the spectrum and damped frequency 
determination. 
 

 
Fig. 4. SDOF system: m-mass,  

c- damping coefficient, k- stiffness. 
 

The form of frequency response of SDOF system 
under impulse load is as follows [2] 
 

)/()/(
/)(

nn ff2jff1
k1fH

ξ+−
=

           (8) 
 
in which undamped natural frequency is 

mk21fn // π=  and damping ratio km2c /=ξ .
 For ξ<1, the impulse response function of the 

system described above is given by the inverse 
Fourier transform of Eq. 3 as follows [2] 
 

)sin()(  tf2Aeth d
t π= δ−

            (9) 
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where d

2
n kff2A /π= , ξπ=δ nf2  and 

2
nd 1ff ξ−= . 

In the example taken into consideration mass m 
and damping coefficient c and  stiffness k are equal 
1 kg and 250 Ns/m and 1.6·106 N/m, respectively. 
The value of damped natural frequency was 
calculated and equal to 200,33Hz. Also, impulse 
response was generated by sampling frequency 
equal to 4096Hz and number of samples N=256. The 
impulse responses of considered system is shown in 
Fig. 5. 
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Fig. 5. SDOF system impulse response 

 
 In the case of using FFT, the spectral resolution 
Δf is 16Hz here. The use of CCBM allows spectral 
resolution Δf  to be fixed arbitrary, e.g. 1Hz and 
0.1Hz. For that CCBM approach and Δf=1Hz 16Hz   
this frequency is 202Hz for spectral resolution of 
1Hz and 201.5Hz for spectral resolution of 0.1Hz. 

To simulate stiffness change of SDOF system, 
stiffness k* has been changed to 0.95k, 0.9k and 
0.85k. This way, new values of real damped 
frequencies and determined frequencies have been 
obtained, see Tab. 2.  
 
Table 2. Real and determined frequencies for k* case 

 
 

Analyzing showed results, it is observed that 
using CCBM we can obtain much more accurate 
frequency determination than using FFT. For two 
cases (0.95k, 0.9k) frequency shift using FFT is zero 
when stiffness change of SDOF system can be 
detected in the form of decreasing of damped 
frequency by using CCBM. By k*=0.85k, change of 
stiffness is detected by using both methods (FFT, 
CCBM).  

Because of spectral resolution, frequency 
determined on the base of FFT not always has 
pointed the stiffness change. Using CCBM, spectral 
resolution can be improved (setting higher 
resolution) and change of SDOF system condition 
can by detected for lowest changes of stiffness. 
 
4. DIAGNOSING THE ROTOR BLADE 

DAMAGE 
 
 Next diagnostic case is the case of notched rotor 
blade of 1st stage of an axial-flow compressor of 
aircraft jet engine (Fig. 6). The notch has been 
prepared near the base of the blade leading edge. 
 

 
Fig. 6. Notched rotor blade 

 
Acoustic impulse responses of both the intact  

and the damaged blade have been recorded by 
impulse load at middle zone of blade body. In every 
case it has been five hammer impacts resulting five 
impulse responses. The parameters of recording was: 
sampling frequency fs=65536Hz, length of signal 
N=2048 samples. An exemplary acoustic impulse 
response of the tested rotor blade is shown in Fig. 7. 
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Fig. 7. Acoustic impulse response of 

the blade 
 

Real 
damped 

frequency 
(Hz) 

FFT 
Δf=16Hz 

(Hz) 

CCEM 
Δf=1Hz 

(Hz) 

CCEM 
Δf=0.1Hz 

(Hz) 

k*=k 
200.33 192 202 201.5 

k*=0.95k 
195.21 192 197 196.5 

Frequency shift 
5.12 0 5 5.0 

k*=0.9k 
189.95 192 191 191.3 

Frequency shift 
10.38 0 11 10.2 

k*=0.85k 
184.54 176 186 186.0 

Frequency shift 
15.79 16 16 15.5 
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Fig. 8. Spectra obtained using FFT 

and CCBM 
 
 For diagnosing the blade damage, the change of 
frequency of harmonic at highest amplitude has been 
taken into consideration – Fig. 8. 

When impulse responses of both the intact and 
the damaged blade were analyzed using FFT (32Hz 
spectral resolution), it has been obtained the same 
values of frequency of considered harmonic. It has 
always been 13632Hz. Whereas the use of CCBM 
enables the spectrum to have greater resolution than 
FFT (e.g. 1Hz) and frequency shift is observed as a 
result of blade damage. It is shown in Tab. 3. 
 

Table 3. Frequency determination using CCBM by 
fixed 1Hz spectral resolution 

No. Intact blade Damage blade 
1 13641 13630 
2 13639 13632 
3 13639 13630 
4 13640 13629 
5 13639 13632 

Mean 13639,6 13630,6 
Std 0,894 1,34 

 

 
Fig. 9. Determined frequencies for 

intact blade and damaged blade using 
CCBM 

 
The frequency shift using FFT was zero in spite 

of blade damage. Thus, frequency determination of 
impulse response components by using FFT  have 
not been sufficient to detect defect of the blade. As 
shown in Fig. 9, the use of CCBM enables to 
observe the shift in frequency as a result of blade 
damage. 
 

 
7. CONCLUSIONS 
 

The paper presents a comparison of results of 
frequency determination of impulse response 
components that have been obtained using cross-
correlation-based method to results obtained using 
fast Fourier transform. The proposed non-Fourier 
method of frequency determination of spectrum 
components is achieved by correlating the analyzed 
signal and reference single-harmonic signals and 
using Hilbert transform to obtain an envelope of 
cross-correlation function. The spectral analysis 
obtained by using proposed method has its 
advantage over the FFT that the spectral resolution 
does not depend on signal length and it gives a 
possibility to obtain a controllable spectral 
resolution. Moreover, the spectral resolution can be 
much greater than spectral resolution resultant from 
FFT. By extension, frequency readings are more 
accurate by doing proposed frequency resolution 
improvement. Thus, cross-correlation-based method 
can be an additional method for improving the 
accuracy of natural frequencies measurement using 
impulse tests. 
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